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Gravitation of fast-moving particles 

W B Bonnor 
Queen Elizabeth College, University of London, Campden Hill Road, Kensington, London 
W8 lAH,  England 

Received 16 November 1981 

Abstract. Melissinos has recently discussed two possible experiments on the gravitation 
of a bunch of charged particles moving in a storage ring. In one experiment the gravitational 
field of the bunch is measured by a detector, and in the second the bunch is deflected 
from its circular path by a large mass outside the ring. In this paper the theoretical basis 
of the experiments is examined by using the properties of Schwarwchild space-time. 

1. Introduction 

In an interesting paper Melissinos (1981) has studied gravitation of fast-moving 
charged particles circulating in a bunch round a storage ring. He has considered two 
possible experiments: first, to use the bunch as a source of gravitation and to measure 
its effect on a detector; secondly, to measure the deflection of the bunch from its 
circular path by the field of a large static mass. In setting up a theoretical basis for 
these experiments Melissinos makes two approximations. He approximates the cir- 
cular form of the storage ring by an infinite straight line; and he uses the linear 
approximation to Einstein’s vacuum equations in harmonic coordinates. 

From the standpoint of general relativity it is fairly easy to construct a simple 
model of the second experiment. In this paper the bunch will be considered as a 
charged test particle moving in an applied magnetic field and in the gravitational field 
of a large mass; radiation, gravitational and electromagnetic, will be neglected. One 
can then calculate the motion of the bunch by the geodesic equation, augmented by 
the electromagnetic force term, in the Schwarzschild space-time. Proceeding thus, 
one need not approximate the orbit by a straight line, nor does one need the linear 
approximation in its usual form. This calculation is done in 0 2. The result is quite 
different from that of Melissinos and seems to be well below the limit of experimental 
detection. How far the discrepancy is due to the model being an oversimplification 
is discussed in the conclusion, § 4. 

No satisfactory existing theoretical framework for the first experiment is known 
to me. Uniform straight line motion of the bunch is adequately represented by the 
linear approximation to Einstein’s vacuum equations; indeed, it is the only motion 
which this approximation can legitimately represent (Weyl 1944, Havas and Goldberg 
1962). However, the actual bunch moves in a circle, and to do this it requires the 
intervention of a non-gravitational agency, namely a magnetic field. The gravitational 
field of the latter may not be neglected if one wishes a rational, consistent theory of 
the experiment. 
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1616 W B Bonnor 

To obtain a solution of Einstein's equations representing the gravitational field of 
the bunch plus that of the necessary applied magnetic field would be, even in approxi- 
mation, very difficult. In this paper (§ 3) I content myself with studying the straight 
line motion, but from a point of view different from that of Melissinos. I submit the 
Schwarzschild solution to a Lorentz transformation and examine the geodesic motion 
of a test mass. My result here agrees with that of Melissinos, except for an extra term 
in the equation of motion. 

The paper contains two appendices. In the first the coordinate components of the 
magnetic field are derived by solving Maxwell's equations on the background of the 
Schwarzschild metric due to the large mass. In appendix 2 I give the mathematics 
necessary to derive the equation of motion (3.9). 

2. Deflection of the beam by a massive body 

We study the e9ect of the gravitational field of a large mass M on a bunch of particles 
moving round the storage ring. We idealise the situation .as follows. The bunch is 
considered as a single charged test mass, moving nearly in a circle under an applied 
magnetic field orthogonal to the ring, and the gravitational field of M. We ignore 
auxiliary fields which are used in practice and we consider the magnetic field to be 
uniform, subject to small corrections due to general relativity. M is supposed to lie 
in the plane of the ring, and outside it. (Much the same analysis applies if M is inside.) 

The gravitational field of M is given by the Schwarzschild metric, and it will be 
sufficient to use the linearised form, i.e. to ignore powers of M higher than the first: 

d s 2 =  -(I  + 2 ~ r - ~ ) d r ~ - r ~ ( d 6 ~ + s i n '  6 d 4 2 ) + c 2 ( 1  -2pr- ')df2,  (2.1) 

where 

CL = G M C - ~ ,  (2.2) 

G being the gravitational constant and c the speed of light. We shall number the 
coordinates as follows: 

x l = r ,  x2  6, x 3 = 4 ,  x4=t .  (2.3) 

M is taken at the origin 0 of polar coordinates, and the storage ring, of coordinate 
radius a, has its centre A at r = a + b, B = &r, 4 = 0, where 

a > > b > > 2 p > O .  (2.4) 

The ring lies in the plane 6 = &r (see figure 1). 

Figure 1. The mass M is at 0 and the bunch moves in a circle, in the plane 0 = i r ,  under 
the influence of the magnetic field H. 
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The applied magnetic field is static, asymptotically uniform, and orthogonal to the 
ring. It must satisfy Maxwell's equations on the background of the approximate 
Schwarzschild metric (2.1). These equations are solved in appendix 1, and it is shown 
that the only non-vanishing components of the electromagnetic field tensor at a point 
in the plane 8 = 3~ are 

-F3' = F13 = r-'H(1-2pr-'), (2.5) 

where H is a constant. This corresponds to a uniform magnetic field of strength H, 
but with a correcting term due to the gravitational field of M. 

The motion of the bunch is given by the geodesic equation augmented by the term 
expressing the electromagnetic force: 

e and mo being the charge and proper mass of the bunch, and r h b  the Christoffel 
symbols for (2.1); radiation terms are neglected. Gaussian units are used for elec- 
tromagnetic quantities. The motion takes place in 8 = &r, and is governed by three 
equations, namely (2.1), and (2.6) with i = 3 and 4. These may be written 

(~+l ) (z )  2 p  dr +r2(;) dq5 ' -c2(l---)(z) 2 p  dt = - I ,  

d2q5 2 dr dq5 w dr 
ds2 r ds ds r ds '  
- +- - -= _ -  - 

d2t 2p dr dt 
--si--= 0 ,  ds2 r ds ds 

(2.7) 

(2.9) 

once again ignoring terms in M 2 ,  and putting 

U = eH/mc2. (2.10) 

r2 dq51ds = h - &r2, (2.1 1) 

dtlds = k( 1 + 2p/r) ,  (2.12) 

h and k being constants of integration. Substituting these into (2.7) we obtain after 
simplification 

(drldsI2 = r -3 [ - aw2rS+tw2pr4+(~h  + c 2 k 2 -  l ) r3+2pr2 ( l  -oh) -h2r+2ph2] ,  

We integrate (2.8) and (2.9) to get 

=: r-3Q, (2.13) 

introducing Q to denote the expression in the square bracket. 
If p = 0, equations (2.11)-(2.13) are special relativistic equations referring to the 

circular motion of a charged particle in a uniform magnetic field, determined by the 
constants of the motion h and k related to the angular momentum and the energy. 
We can express these constants in terms of the distances a and b by noting that 
drlds = 0 when r = b and when r = 2a + b, which gives from (2.13) with p = 0 

h = lwb(2a+b) ,  

c 2 k 2  = 1 + 0 2 a 2 .  

(2.14) 

(2.15) 
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Finally we recall that the period of the circular motion when M = 0 is 27r(oc)-’(l+ 
W2a2)1’2 , a result best obtained by using A as origin and solving (2.6). 

We shall now allow the constants h and k in (2.13) to retain their values (2.14) 
and (2.15), but let M be non-zero, while assuming (2.4). This means physically that 
we are studying a motion, with the same energy and angular momentum as before, 
but with the mass M present at 0. The new motion must satisfy (2.13) with p # 0. 

To find the effect of M on the orbit we study the roots of dr/ds = 0,or of 

Q=O. (2.16) 

When M = 0 the roots are, of course, 

r = *b,  r = k(2a + b )  (2.17) 

(the root r = 0 of (2.16) with M = 0 has no physical significance because of the factor 
r in (2.13)). This corresponds to the closed circular orbit referred to above. The 
effect of M # 0 is to make small changes in these roots, as is seen in figure 2 in which 
the broken and unbroken lines refer to cases M=O and M # O  respectively. An 
additional positive root, shown at 0 ,  occurs at a distance from 0 of the order of the 
Schwarzschild radius and is of no physical relevance here. Thus when the mass is 
present the bunch moves periodically between radial coordinate distances OB’ and 
OC’. The orbit is slightly different from the circular one obtained when M = 0, but 
the point closest to the position of M,  namely B’ in figure 2, does not drift towards M 
in successive revolutions, as suggested by Melissinos’s analysis. 

- 3  

I Q  

Figure 2. The plot of Q against r ;  the broken and unbroken curves refer to the cases of 
M = 0 and M f 0 respectively. 

The intercept of the orbit on q5 =0, which I shall call the major axis, is given by 
B’C’ in figure 2. We can calculate this by finding the small corrections to the roots 
(2.17) of (2.16). Confining attention to positive roots, we substitute 

into (2.16), neglect powers of E higher than the first, and find, using (2.2), 
r = b - - E  

E = B’B = aGML2(a  + b)-’[ l+ (uw)-’] .  (2.18) 
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Similarly, substituting 

r = 2a + b + q  

and neglecting powers of 77 higher than the first, we obtain 

q = CC’ = aGMc-’(a + b ) - ’ [ l +  (au) - ’ ] ,  

which is equal to E as given by (2 .18) .  The effect of the mass M is therefore to lengthen 
the major axis of the orbit by 2aGMc-’(a + b ) - ’ [ l +  (au) - ’ ]  and to bring the perihelion 
nearer to M by a distance E given by (2.18) .  

M = 3000 kg, a = io5 cm, b = 10 cm, w = 1 0 - ~  cm-‘, (2 .19)  

and find 

Choosing numbers similar to those of Melissinos (1981) ,  we take 

E-4x10-*’cm, 

which seems quite undetectable. 

the Lorentz force; the answer is 
One can, of course, solve the same problem using only Newtonian mechanics and 

E N  = GMc-’[w’a(a + b ) ] - ’ .  

Therefore the relativistic theory simply gives an extra term 

aGMc-*(a + b ) - ’ .  

These terms are approximately equal if one uses the data (2 .19) .  

3. Response of a mass to the moving bunch 

In this case we have to find the acceleration of a test mass in the gravitational field 
of the bunch of charged particles moving in a circle round the ring. Melissinos (1981) ,  
using the linear approximation to Einstein’s vacuum equations, considers instead the 
gravitational effect of the bunch when moving in an infinite straight line (figure 3), 
supposing that this will approximate the circular motion if the distance of closest 
approach is the same in both cases. 

From the staindpoint of general relativity these two motions are entirely different, 
and it is by no means clear that they give comparable accelerations to the test mass. 
The straight line motion requires no external forces, and indeed its field is simply a 
Lorentz transformation of the Schwarzschild solution. The circular motion requires 
an external agency (namely, the magnetic field) which will contribute to the gravita- 
tional field and ought to be taken into account. The linear approximation to Einstein’s 
vacuum equations is incapable of giving a solution to the problem of circular motion 
because the only motion compatible with it is that of constant velocity in a straight 
line (Weyl 1944, Havas and Goldberg 1962). Thus Melissinos’s method is adequate 
for the problem he discusses but not for the one he is really interested in. 

For straight line motion, Melissinos’s result, altered in one respect, can be simply 
obtained by submitting the linearised Schwarzschild solution to a Lorentz transforma- 
tion. We first replace p in (2 .1)  by 

h = Gmc-’ (3.1) 
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where m is the active gravitational mass of the bunch. Next we put (2.1) thus revised 
into isotropic form 

ds = -(1+2AR-’)(dx2+dy2+dz2)+c2(1-2AR-’)dt2, 

by means of the transformation 

x = ( r  - A )  sin 8 cos 4, 

and neglect m2. We now submit (3.2) to the Lorentz transformation 

R 2  = x 2 +  y2+z2 ,  
(3.2) 

y=(r-h)s in8sinq5,  z = ( r  - A )  cos 8, 

x = y(X + U T ) ,  Y = y, z = z, t = y( T + U X C - ~ ) ,  (3.3) 

R 2 =  Y ~ ( X + U T ) ~ +  Y 2 + Z 2 .  (3.4) 

2 - 2  -112 where y = ( l - v  c ) , so  that 

The bunch is now moving with velocity -U along the X axis and the metric is 

d X  dT, R 
(3.5) 

where S = (c2 + u2)(c2 - U’)-’. This agrees with Melissinos except that he omits the 
term 2A/R in the coefficient of (dY2+dZ2) .  

Figure 3. The gravitational effect of the bunch, mass m, on the detecting mass M. m is 
moving in the negative X direction. 

Melissionos’s procedure now is to calculate the acceleration of the mass M in the 
gravitational field of the bunch by using the geodesic equations on (3.5). M is assumed 
to be constrained on the Y axis (figure 3) so its coordinates are 

(0 ,  Y, O), 

and its distance from the bunch m is, by (3.4), 
2 2 2 1 f 2  R M = + ( Y 2 + v  y T )  . 

The gravitational acceleration of M is given by the geodesic equation 

z+r;2(z)  d2 Y d Y  d T  

indices 2 and 4 referring to Y and T respectively. For small, slow oscillations of the 
mass M we may assume d Y/ds << 1, and ds = c d T  is an adequate approximation 
(appendix 2).  Calculating the rs from (3.5) we find, as shown in appendix 2, 

(S+2)y2v2TdY - )=O 
c 2  d T  

(3.9) 



Gravitation of fast-moving particles 1621 

where we have neglected terms of order A’, and of order A(dY/c dT)’, but retained 
the term in dY/dT shown. Supposing that U is comparable to c, we find for the 
modulus of the ratio of the second term in the large brackets to the first 

( 6 + 2 ) y 2 v 2 T d Y  -----lo- y’TdY 6 y 2 d Y  -, 
c’Y6 d T  Y d T  d T  

taking T - s (the period of the circular motion) and Y - b = 10 cm. This ratio 
is not necessarily small. The term in dY/dT damps the motion for T<O and 
anti-damps for T > 0. Neglecting this term in (3.9), we have 

d2Y/dT2 = -mGYa/RL, (3.10) 

which is the result found by Melissinos. It represents Newtonian inverse square law 
attraction multiplied by the factor 6, which can be large. 

4. Conclusion 

In constructing a theoretical model for Melissinos’s proposed first experiment, one 
meets the difficulties mentioned in the Introduction. Evading these by the questionable 
device of studying straight-line instead of circular motion, I found (3.9) for the equation 
of motion of the detecting mass in the gravitational field of the bunch, agreeing with 
Melissinos’s result except for one term. If this procedure is indeed admissible the 
result shows that there can be considerable enhancement of Newtonian gravitational 
attraction. 

Studying Melissinos’s second experiment, in P 2, I obtained a result different from 
his, and below the limit of experimental detection. However, my model is an over- 
simplification. The charged particles in a bunch moving at the velocity contemplated 
would radiate electromagnetic waves very strongly-at a rate sufficient to lose their 
entire rest mass in less than one revolution. In a storage ring this energy would be 
returned to the particles by means of the restoring magnetic forces specially provided 
to stabilise the beam, and distinct from the uniform magnetic field appearing in my 
model. To take account of this one would need to include the restoring forces in the 
term on the right of (2.6), as well as adding to that equation a term corresponding to 
the radiation loss. It is totally obscure how this would affect the result I found. 

Melissinos’s analysis of the second experiment is quite different from mine. He 
supposes that every time it passes {he static mass the bunch receives an impulse, and 
the cumulative effect of these impulses is a drift in the orbit which eventually becomes 
measurable. This treatment seems to take no account of the restoring effect of the 
primary and secondary magnetic fields. 

This question is still quite open, and deserves further attention. 

Appendix 1. Asymptotically uniform magnetic field on a Schwarzschild 
background 

We seek a static solution of Maxwell’s equations in free space 

a -  - ( J - g ~ i k )  = 0, 
ax 

(Al . l )  
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corresponding to a uniform magnetic field on the approximate Schwarzschild metric 
(2.1). Here g is the determinant of (2.1). 

Numbering the coordinates as in (2.3), we can satisfy the first of (Al.l)  by choosing 
a vector potential 

A, = S?P(r) sin2 e, 
determining Fik by 

F i k  = Ai.k -Akh 

the comma meaning partial differentiation, and P being a function to be determined. 
Raising indices by means of (2.1), we find that the second of (Al.l)  demands that 
P satisfy the equation 

( 1  -?) 2p P‘--- 2 P  0 
r2 - 

(A1.2) 

where ’ = d/dr. The solution of (Al.2) is 

P = - $Hr2 + L[r2 log( 1 - 2p/r)  + 2pr  + 2p2],  

H and L being arbitrary constants. The coefficient of L does not refer to an asymptoti- 
cally uniform field, so we put L = 0 and find 

F3, = -Hr sin2 e, F32 = -Hr2 sin 8 cos 6. 

On 8 = f . r r  we have F3, = -Hr, F 3 2  = 0 and on raising indices by means of (2.1) we 
find (2.5). 

Appendix 2. Derivation of equation of motion (3.9) 

The object is to derive (3.9) from the geodesic equation (3.8). The Christoffel symbols, 
obtained from the metric (3.5), are 

Ay2v2T A YSc2 r:, = - rz4= -- AY 
R R 3  ’ R 3  ’ 

rz2= -3, (A2.1) 

terms of order A 2  being neglected. To deal with the terms d Y/ds and dT/ds in (3.8) 
we start from the metric (3.9, remembering that in the displacement of interest 
d X  = d Z  = 0; so 

ds2 = -( 1 + 2A/R) d Y2 + ~’ (1 -  2AS/R) dT2,  

whence we find 

-=-[l-F-(l+R)(;dT)] d T  1 2AS 2A 1 d Y  -’” . 
ds c 

Thus, neglecting terms of order A and of order (dY/c dT)’, we have 

c d T  = ds. 

We need to replace d2 Y/ds2 in (3.8) by 

+- 7. 

(A2.2) 

(A2.3) 

(A2.4) 
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d2T/ds2 is obtained by differentiating (A2.2), or by use of the geodesic equation in 
T corresponding to (3.8), and we find 

d2T/ds2 = - A v ~ ~ ’ S T / C ’ R ~ ,  (A2.5) 

neglecting terms of orders A 2 ,  A dY/c2dT. Substituting (A2.1), (A2.4) and (A2.5) 
into (3.8), and using (A2.3), we obtain (3.9). 
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